
8

Index
UNIT 1

Data Handling Using Pandas

Python module- A python module is a python script file(.py file) containing
variables, python classes, functions, statements etc.

Python Library/package- A Python library is a collection of modules that together cater
to a specific type of need or application. The advantage of using libraries is that we can
directly use functions/methods for performing specific type of application instead of rewriting
the code for that particular use. They are used by using the import command as-
import libraryname

at the top of the python code/script file.
Some examples of Python Libraries-

1. Python standard library-It is a collection of library which is normally distributed
along with Python installation. Some of them are-

a. math module- provides mathematical functions
b. random module- provides functions for generating pseudo-random numbers.
c. statistics module- provides statistical functions

2. Numpy (Numerical Python) library- It provides functions for working with large
multi-dimensional arrays(ndarrays) and matrices. NumPy provides a large set of
mathematical functions that can operate quickly on the entries of the ndarray
without the need of loops.

3. Pandas (PANel + DAta) library- Pandas is a fast, powerful, flexible and easy to use
open source data analysis and manipulation tool. Pandas is built on top of NumPy,
relying on ndarray and its fast and efficient array based mathematical functions.

4. Matplotlib library- It provides functions for plotting and drawing graphs.

Data Structure- Data structure is the arrangement of data in such a way that
permits efficient access and modification.

Pandas Data Structures- Pandas offers the following data structures-

a) Series - 1D array
b) DataFrame - 2D array

Series- Series is a one-dimensional array with homogeneous data.
Index/Label

1D Data values
Key features of Series-

0 1 2 3 4
abc def ghi Jkl mno

9

 A Series has only one dimension, i.e. one axis
 Each element of the Series can be associated with an index/label that can be used

to access the data value. By default the index starts with 0,1,2,3… but it can be set
to any other data type also.

 Series is data mutable i.e. the data values can be changed in-place in memory
 Series is size immutable i.e. once a series object is created in memory with a fixed

number of elements, then the number of elements cannot be changed in place.
Although the series object can be assigned a different set of values it will refer to a
different location in memory.

 All the elements of the Series are homogenous data i.e. their data type is the same. For
example.

all data is of int type

all data is of object type

Creating a Series- A series object can be created by calling the Series() method in the
following ways-

a) Create an empty Series- A Series object not containing any elements is an
empty Series. It can be created as follows-

b) Create a series from array without index- A numpy 1D array can be used

to create a Series object as shown below. The default index is 0, 1, 2, …

import pandas as pd
s1=pd.Series() print(s1)

o/p-
Series([], dtype: float64)

0 1 2 3 4
223 367 456 339 927

a b c de fg
1 def 10.5 Jkl True

import pandas as pd
import numpy as np
a1=np.array(['hello', 'world', 'good', np.NaN])
 s1=pd.Series(a1)
print(s1)

o/p-
0 hello
1 world
2 good
3 nan
dtype: object

10

c) Create a series from array with index- The default index for a Series
object can be changed and specified by the programmer by using the index
parameter and enclosing the index in square brackets. The number of elements of
the array must match the number of index specified otherwise python gives an
error.

d) Create a Series from dictionary- Each element of the dictionary contains a

key:value pair. The key of the dictionary becomes the index of the Series object
and the value of the dictionary becomes the data.

a) Create a Series from dictionary, reordering the index- When we are

creating a Series object from a dictionary then we can specify which all elements of
the dictionary, we want to include in the Series object and in which order by
specifying the index argument while calling the Series() method.

 If any key of the dictionary is missing in the index argument, then that
element is not added to the Series object.

#Creating a Series object using numpy array and specifying index
 import pandas as pd
import numpy as np
a1=np.array(['hello', 'world', 'good', 'morning'])
s1=pd.Series(a1, index=[101, 111, 121, 131])
print(s1)

o/p-
101
111
121
131

hello
world
good
morning

dtype: object

#4 Creating a Series object from dictionary
import pandas as pd
d={101:'hello', 111:'world', 121:'good', 131:'morning'} s1=pd.Series(d)
print(s1)

o/p-
101
111
121
131

hello
world
good
morning

dtype: object

11

 If the index argument contains a key not present in the dictionary then a
value of NaN is assigned to that particular index.

 The order in which the index arguments are specified determines the order
of the elements in the Series object.

Create a Series from a scalar value- A Series object can be created from a single value
i.e. a scalar value and that scalar value can be repeated many times by specifying the index
arguments that many number of times.

a) Create a Series from a List- A Series object can be created from a list as shown

below.

#5 Creating a Series object from dictionary reordering
the index
import pandas as pd

d={101:'hello', 111:'world', 121:'good', 131:'morning'}
s1=pd.Series(d, index=[131, 111, 121, 199])
print(s1)

o/p-
131
111
121
199

morning
world
good
NaN

dtype: object

#6 Creating a Series object from scalar value
import pandas as pd

s1=pd.Series(7, index=[101, 111, 121]) print(s1)

o/p-
101 7
111 7
121 7
dtype: int64

#7 Creating a Series object from list

import pandas as pd L=['abc', 'def', 'ghi', 'jkl'] s1=pd.Series(L)
print(s1)

o/p-
0
1
2
3

abc
def ghi
jkl

dtype: object

12

b) Create a Series from a Numpy Array (using various array creation methods) -
A Series object can be created from a numpy array as shown below. All the
methods of numpy array creation can be used to create a Series object.

#d.Create an array consisting of the elements from
1.1, 1.2, 1.3,1.4, 1.5, 1.6, 1.7
a4=np.arange(1.1,1.8,0.1)
s4=pd.Series(a4) print('s4=', s4)

#e. Create an array of 10 elements which are linearly spaced between 1 and 10
(both inclusive)
a5=np.linspace(1,10,4)
s5=pd.Series(a5) print('s5=', s5)

#f. Create an array containing each of the characters of the word ‘helloworld’
a6=np.fromiter('helloworld', dtype='U1')
s6=pd.Series(a6) print('s6=', s6)

o/p:
s1= 0 2.0
1 4.0
2 7.0
3 10.0
4 13.5
5 20.4
dtype: float64

#7a Creating a Series object from list
import pandas as pd
import numpy as np

#a
.

Create an array consisting of elements of a list [2,4,7,10,
13.5, 20.4] a1=np.array([2,4,7,10, 13.5, 20.4])

s1=pd.Series(a1)
print('s1=', s1)

#b
.

Create an array consisting of ten
zeros. a2=np.zeros(10)

s2=pd.Series(a2, index=range(101,
111)) print('s2=', s2)

#c
.

Create an array consisting of five
ones. a3=np.ones(5)

s3=pd.Series(a3)
print('s3=', s3)

13

s2= 101 0.0
102 0.0
103 0.0
104 0.0
105 0.0
106 0.0
107 0.0
108 0.0
109 0.0
110 0.0
dtype: float64
s3= 0 1.0
1 1.0
2 1.0
3 1.0
4 1.0
dtype: float64
s4= 0 1.1
1 1.2
2 1.3
3 1.4
4 1.5
5 1.6
6 1.7
dtype: float64
s5= 01.0

1 4.0
2 2 7.0
3 3 10.0

dtype: float64

s6= 0 h

1 e
2 l
3 l
4 o
5 w
6 o
7 r
8 l
9 d

dtype: object

14

Index
SERIES : Operations on Series objects-
1. Accessing elements of a Series object

The elements of a series object can be accessed using different methods as shown below-
a) Using the indexing operator []

The square brackets [] can be used to access a data value stored in a
Series object. The index of the element must be entered within the square
brackets. If the index is a string then the index must be written in quotes. If
the index is a number then the index must be written without the quotes.
Attempting to use an index which does not exist leads to error.

a) Using the loc property of the Series object

The loc property of a Series object can be used to access a range of data
values using the label/index name inside [] brackets in the following ways:

1. A single index can be passed to the loc property. This will return back a single
value.

2. A list of indexes can be passed. This will return back a Series object
containing the multiple values

3. A slice notation using labels/index such as startindex:stopindex. Here
contrary to the slice notation the ending index value also is included in the
result.

4. A boolean array of the same length as the axis being sliced, e.g. [True, False,
True].

b) Using the iloc property of the Series object

The iloc property of a Series object can be used to access a range of data values
using the
index position numbers inside [] brackets in the following ways:

5. A single int can be passed to the iloc property. This will return back a single value.
6. A list of int representing index position numbers can be passed. This will

return back a Series object containing the multiple values
7. A slice notation using index position numbers can be passed. The data values

#8 Accessing elements of Series using index
import pandas as pd

d={101:'hello', 'abc':'world', 121:'good', 131:'morning'} s=pd.Series(d)
print(s['abc']) print(s[131])

o/p- world
 morning

15

at the slice position numbers will the included in the returned Series object

8. A boolean array of the same length as the axis being sliced, e.g. [True, False,
True].

2. Accessing the top elements of a Series object
The head() method can be used to return back the top elements of a Series

object. This function returns back another Series object. If no parameter is passed to
the head() method it returns back the top 5 elements. If an integer parameter (say n) is
passed to the head() method, then the top n elements of the Series object is returned
back. The index of the respective elements is returned as it was in the original object.

1. Accessing the bottom elements of a Series object
The tail() method can be used to return back the bottom elements of a Series object.
This function returns back another Series object. If no parameter is passed to the tail()
method it returns back the bottom 5 elements. If an integer parameter (say n) is passed
to the tail() method, then the bottom n elements of the Series object is returned back.
The index of the respective elements is returned as it was in the original object.

#15 Accessing the bottom elements of a Series object
t import pandas as pd

L=[101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211]
s=pd.Series(L)
 x=s.tail()

#14 Accessing the top elements of a Series object
import pandas as pd

L=[101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211]
s=pd.Series(L)

x=s.head()
print('x=\n', x)
y=s.head(3)
print('y=\n', y)

o/p:
x=
0 101
1 111
2 121
3 131
4 141
dtype: int64 y=
0 101
1 111
2 121
dtype: int64

16

print('x=\n', x)
y=s.tail(3)
print('y=\n', y)

o/p:
x=
7 171
8 181
9 191
10 201
11 211
dtype: int64

y=
9 191
10 201
11 211
dtype: int64

3. Indexing/Slicing a Series object-

The index [] operator can be used to perform indexing and slicing operations on a Series
object. The index[] operator can accept either-

a) Index/labels
b) Integer index positions

a) Using the index operator with labels-

The index operator can be used in the following ways-
i) Using a single label inside the square brackets- Using a single label/index
inside the square brackets will return only the corresponding element referred to by
that label/index.

Using multiple labels- We can pass multiple labels in any order that is present in the
Series object. The multiple labels must be passed as a list i.e. the multiple labels must be
separated by commas and enclosed in double square brackets. Passing a label is passed
that is not present in the Series object, should be avoided as it right now gives NaN as the
value but in future will be considered as an error by Python.

17 indexing a Series object
multiple labels import pandas as pd

d={'a':101, 'b':102, 'c':103, 'd':104, 'e':105, 'f':106}
s=pd.Serie
s(d)

16 indexing a Series object single label
 import pandas as pd

d={'a':101, 'b':102, 'c':103, 'd':104, 'e':105, 'f':106}
s=pd.Series(d)
 t=s['b']
print(t)

o/p:
102

17

u=s[['b', 'a',
'f']]
print(u)

o/p:
b 102
a 101
f 106
dtype: int64

ii) Using slice notation startlabel:endlabel- Inside the index operator we can pass
startlabel:endlabel. Here contrary to the slice concept all the items from startlabel
values till the endlabel values including the endlabel values is returned back.

b) Slicing a Series object using Integer Index positions-
The concept of slicing a Series object is similar to that of slicing python lists, strings etc.
Even though the data type of the labels can be anything each element of the Series object
is associated with two integer numbers:

 In forward indexing method the elements are numbered from 0,1,2,3, … with 0
being assigned to the first element, 1 being assigned to the second element and so
on.

 In backward indexing method the elements are numbered from -1,-2, -3, … with -1
being assigned to the last element, -2 being assigned to the second last element
and so on.

For example consider the following Series object-

The Series object is having the following integer index positions-

18 indexing a Series object using startlabel:endlabel
 import pandas as pd

d={'a':101, 'b':102, 'c':103, 'd':104, 'e':105, 'f':106}
s=pd.Series(d)

u=s['b': 'e']
print(u)

o/p:
b 102
c 103
d 104
e 105

dtype: int64

d={'a':101, 'b':102, 'c':103, 'd':104, 'e':105, 'f':106}
s=pd.Series(d)

18

forward
indexing---> 0 1 2 3 4 5

a b c d e f

 101 111 121 131 141 151

-6 -5 -4 -3 -2 -1

< -----backward
indexing

Slice concept-

The basic concept of slicing using integer index positions are common to Python object
such as strings, list, tuples, Series, Dataframe etc. Slice creates a new object using
elements of an existing object. It is created as: ExistingObjectName[start : stop : step]
where start, stop , step are integers

The basic rules of slice:

i. The slice generates index/integers from : start, start + step, start + step + step,
and so on. All the numbers generated must be less than the stop value when
step is positive.

ii. If step value is missing then by default is taken to be 1
iii. If start value is missing and step is positive then start value is by default taken as 0.
iv. If stop value is missing and step is positive then start value is by default taken to

mean till you reach the ending index(including the ending index)
v. A negative step value means the numbers are generated in backwards order i.e.

from - start, then start - step, then start -step -step and so on. All the numbers
generated in negative step must be greater than the stop value.

vi. If start value is missing and step is negative then start value takes default value -1
vii. If stop value is missing and step is negative then stop value is by default taken to be

till you reach the first element(including the 0 index element)

#16 Slicing a Series object
import pandas as pd

d={'a':101, 'b':111, 'c':121, 'd':131, 'e':141, 'f':151}
s=pd.Series(d)

x=s[1: :2]
print('x=\n', x)

y=s[-1: :-1]
print('y=\n', y)

z=s[1: -2: 2]
print('z=\n', z)

o/p:
x=
b 111
d 131
f 151
dtype: int64
y=
f 151
e 141
d 131
c 121
b 111
a 101
dtype: int64
 z=
b 111
d 131
dtype: int64

19

QUESTION AND ANSWER SECTION
1 What will be the output of following code-

import pandas as pd
s1=pd.Series([1,2,2,7,’Sachin’,77.5])
print(s1.head())
print(s1.head(3))

Ans:

0 1
1 2
2 2
3 7
4 Sachin
dtype: object

0 1
1 2
2 2
dtype: object

2 In pandas, S is a series with the following result:
S=pd.Series([5,10,15,20,25])
The series object is automatically indexed as 0,1,2,3,4. Write a statement to
assign the series as a, b, c, d, e index explicitly.

Ans:
S=pd.Series([5,10,15,20,25],index=['a','b','c','d','e'])

3 Name any two attributes of Series in Python

Ans. Two attributes of Series in Python are :
1. index
2. values

4 Write the output of the following :
import numpy as num
import pandas as pd
arr=num.array([1,7,21])
S1 = pd.Series(arr)
print(S1)
Ans.
0 1
1 7
2 21
dtype: int32

20

5 Write the output of the following code :
import pandas as pd
S1 = pd.Series([31, 28, 31, 30, 31], index = ["Jan", "Feb", "Mar", "Apr", "May"])
print("-----------")
print(S1[1:3])
print("-----------")
print(S1[:5])
print("-----------")
print(S1[3:3])
print("-----------")
print(S1["Jan":"May"])
Ans.

Feb 28
Mar 31
dtype: int64

Jan 31
Feb 28
Mar 31
Apr 30
May 31
dtype: int64

Series([], dtype: int64)

Jan 31
Feb 28
Mar 31
Apr 30
May 31
dtype: int64

6 Differentiate between Pandas Series and NumPy Arrays

Ans. Differences are

Pandas Series NumPy Arrays

In series we can define our own labeled
index to access elements of an array.

In NumPy Arrays we can not define
our own labelled index to access
elements of an array

Series require more memory NumPy occupies lesser memory.

The elements can be indexed in
descending order also.

The indexing starts with zero for the
firstelement and the index is fixed

21

7 1. What do you mean by Pandas in Python?
Ans. PANDAS (PANel DAta) is a high-level data manipulation tool used for analyzing
data. Pandas library has a very rich set of functions.

1. Series
2. DataFrame
3. Panel

8 Name three data structures available in Pandas.

Ans. Three data structures available in Pandas are :
1. Series
2. DataFrame
3. Panel

9 Write the code in python to create an empty Series.
Ans.

import pandas as pd
S1 = pd.Series()
print(S1)

OR

import pandas as pd
S1 = pd.Series(None)
print(S1)

OUTPUT : Series([], dtype: float64)

10 Define data structure in Python.
Ans. A data structure is a collection of data values and operations that can be applied to
that data.

11 What do you mean by Series in Python?
Ans. A Series is a one-dimensional array containing a sequence of values of any data
type (int, float, list, string, etc) which by default have numeric data labels (called index)
starting from zero. Example of a series containing names of students is given below:
Index Value
0 Arnab
1 Samridhi
2 Ramit
3 Divyam
4 Kritika

22

12 Write command to install pandas in python.
Ans. pip install pandas

13 Write the output of the following :
import pandas as pd
S1 = pd.Series(range(100, 150, 10), index=[x for x in "My name is Amit Gandhi".split()])
print(S1)
Ans.

My 100
name 110
is 120
Amit 130
Gandhi 140
dtype: int64

14 Write the output of the following :
import pandas as pd
L1=[1,"A",21]
S1 = pd.Series(data=2*L1)
print(S1)
Ans.

0 1
1 A
2 21
3 1
4 A
5 21
dtype: object

15 Which property of series return all the index value?
Ans. index property return all the index value

16 Write the output of the following :
import pandas as pd
S1 = pd.Series(range(1,15,3), index=[x for x in "super"])
print(S1)
Ans.

s 1
u 4
p 7
e 10
r 13
dtype: int64

23

17 Complete the code to get the required output :

import ______ as pd
________ = pd.Series([31, 28, 31], index = ["Jan", "Feb", "Mar"])
print(S1["_______"])

OUTPUT :

28
Ans.
import pandas as pd
S1 = pd.Series([31,28,31], index = ["Jan","Feb","Mar"])
print(S1["Feb"])

18 Fill in the blank of given code, if the output is 71.

import pandas as pd
S1 = pd.Series([10, 20, 30, 40, 71,50])
print(S1[__________])
Ans.
import pandas as pd
S1 = pd.Series([10, 20, 30, 40, 71,50])
print(S1[4])

19 Write a program to modify the value 5000 to 7000 in the following Series “S1”

A 25000
B 12000
C 8000
D 5000

Ans.
import pandas as pd
S1[3]=7000
print(S1)

20 Write a program to display only those values greater than 200 in the given Series “S1”

0 300
1 100
2 1200
3 1700

Ans.

import pandas as pd
S1 = pd.Series([300, 100, 1200, 1700])
print(S1[S1>200])

